Geometry Marathon

Authors: Mathlinks Forum

Edited by Ercole Suppa¹

March 21, 2011

1. Inradius of a triangle, with integer sides, is equal to 1. Find the sides of the triangle and prove that one of its angle is 90°.

2. Let O be the circumcenter of an acute triangle ABC and let k be the circle with center S that is tangent to O at A and tangent to side BC at D. Circle k meets AB and AC again at E and F respectively. The lines OS and ES meet k again at I and G. Lines BO and IG intersect at H. Prove that $GH = \frac{DF^2}{AF}$.

3. $ABCD$ is parallelogram and a straight line cuts AB at $\frac{AB}{x}$ and AD at $\frac{AD}{x}$ and AC at $x \cdot AC$. Find x.

4. In $\triangle ABC$, $\angle BAC = 120^\circ$. Let AD be the angle bisector of $\angle BAC$. Express AD in terms of AB and BC.

5. In a triangle ABC, AD is the feet of perpendicular to BC. The inradii of ADC, ADB and ABC are x, y, z. Find the relation between x, y, z.

6. Prove that the third pedal triangle is similar to the original triangle.

7. $ABCDE$ is a regular pentagon and P is a point on the minor arc AB. Prove that $PA + PB + PD = PC + PE$.

8. Two congruent equilateral triangles, one with red sides and one with blue sides overlap so that their sides intersect at six points, forming a hexagon. If r_1, r_2, r_3, b_1, b_2, b_3 are the red and blue sides of the hexagon respectively, prove that
 (a) $r_1^2 + r_2^2 + r_3^2 = b_1^2 + b_2^2 + b_3^2$
 (b) $r_1 + r_2 + r_3 = b_1 + b_2 + b_3$

9. if in a quadrilateral $ABCD$, $AB + CD = BC + AD$. Prove that the angle bisectors are concurrent at a point which is equidistant from the sides of the sides of the quadrilateral.

¹Email: ercolesuppa@gmail.com, Web: http://www.esuppa.it/
10. In a triangle with sides \(a, b, c\), let \(r\) and \(R\) be the inradius and circumradius respectively. Prove that for all such non-degenerate triangles,

\[
2rR = \frac{abc}{a + b + c}
\]

11. Prove that the area of any non degenerate convex quadrilateral in the cartesian plane which has an incircle is given by \(\Delta = rs\) where \(r\) is the inradius and \(s\) is the semiperimeter of the polygon.

12. Let \(ABC\) be a equilateral triangle with side \(a\). \(M\) is a point such that \(MS = d\), where \(S\) is the circumcenter of \(ABC\). Prove that the area of the triangle whose sides are \(MA, MB, MC\) is

\[
\frac{\sqrt{3}|a^2 - 3d^2|}{12}
\]

13. Prove that in a triangle,

\[
SI_i^2 = R^2 + 2Rr_a
\]

14. Find the locus of \(P\) in a triangle if \(PA^2 = PB^2 + PC^2\).

15. In an acute triangle \(ABC\), let the orthocenter be \(H\) and let its projection on the median from \(A\) be \(X\). Prove that \(BHXC\) is cyclic.

17. If \(ABC\) is a right triangle with \(A = 90^\circ\), if the incircle meets \(BC\) at \(X\), prove that \([ABC] = BX \cdot XC\).

18. \(n\) regular polygons in a plane are such that they have a common vertex \(O\) and they fill the space around \(O\) completely. The \(n\) regular polygons have \(a_1, a_2, \cdots, a_n\) sides not necessarily in that order. Prove that

\[
\sum_{i=1}^{n} \frac{1}{a_i} = \frac{n - 2}{2}
\]

19. Let the equation of a circle be \(x^2 + y^2 = 100\). Find the number of points \((a, b)\) that lie on the circle such that \(a\) and \(b\) are both integers.

20. \(S\) is the circumcentre of the \(\triangle ABC\). \(\triangle DEF\) is the orthic triangle of \(\triangle ABC\). Prove that \(SA\) is perpendicular to \(EF\), \(SB\) is the perpendicular to \(DF\) and \(SC\) is the perpendicular to \(DE\).

21. \(ABCD\) is a parallelogram and \(P\) is a point inside it such that \(\angle APB + \angle CPD = 180^\circ\). Prove that

\[
AP \cdot CP + BP \cdot DP = AB \cdot BC
\]
22. \(ABC \) is a non degenerate equilateral triangle and \(P \) is the point diametrically opposite to \(A \) in the circumcircle. Prove that \(PA \times PB \times PC = 2R^3 \) where \(R \) is the circumradius.

23. In a triangle, let \(R \) denote the circumradius, \(r \) denote the inradius and \(A \) denote the area. Prove that:
\[
9r^2 \leq A\sqrt{3} \leq r(4R + r)
\]
with equality if, and only if, the triangle is equilateral.

23. If in a triangle, \(O, H, I \) have their usual meanings, prove that
\[
2 \cdot OI \geq IH
\]

24. In acute angled triangle \(ABC \), the circle with diameter \(AB \) intersects the altitude \(CC' \) and its extensions at \(M \) and \(N \) and the circle with diameter \(AC \) intersects the altitude \(BB' \) and its extensions at \(P \) and \(Q \). Prove that \(M, N, P, Q \) are concyclic.

25. Given circles \(C_1 \) and \(C_2 \) which intersect at points \(X \) and \(Y \), let \(\ell_1 \) be a line through the centre of \(C_1 \) which intersects \(C_2 \) at points \(P, Q \). Let \(\ell_2 \) be a line through the centre of \(C_2 \) which intersects \(C_1 \) at points \(R, S \). Show that if \(P, Q, R, S \) lie on a circle then the centre of this circle lies on \(XY \).

26. From a point \(P \) outside a circle, tangents are drawn to the circle, and the points of tangency are \(B, D \). A secant through \(P \) intersects the circle at \(A, C \). Let \(X, Y, Z \) be the feet of the altitudes from \(D \) to \(BC \), \(A \), \(AB \) respectively. Show that \(XY = YZ \).

27. \(\triangle ABC \) is acute and \(h_a, h_b, h_c \) denote its altitudes. \(R, r, r_0 \) denote the radii of its circumcircle, incircle and incircle of its orthic triangle (whose vertices are the feet of its altitudes). Prove the relation:
\[
h_a + h_b + h_c = 2R + 4r + r_0 + \frac{r^2}{R}
\]

28. In a triangle \(\triangle ABC \), points \(D, E, F \) are marked on sides \(BC, CA, AC \), respectively, such that
\[
\frac{BD}{DC} = \frac{CE}{EA} = \frac{AF}{FB} = 2
\]
Show that
(a) The triangle formed by the lines \(AD, BE, CF \) has an area \(1/7 \) that of \(\triangle ABC \).
(b) (Generalisation) If the common ratio is \(k \) (greater than 1) then the triangle formed by the lines \(AD, BE, CF \) has an area \(\frac{(k-1)^2}{k^{2}+k+1} \) that of \(\triangle ABC \).
29. Let AD, the altitude of $\triangle ABC$ meet the circum-circle at D'. Prove that the Simson’s line of D' is parallel to the tangent drawn from A.

30. Point P is inside $\triangle ABC$. Determine points D on side AB and E on side AC such that $BD = CE$ and $PD + PE$ is minimum.

31. Prove this result analogous to the Euler Line. In triangle $\triangle ABC$, let G, I, N be the centroid, incentre, and Nagel point, respectively. Show that,

(a) I, G, N lie on a line in that order, and that $NG = 2 \cdot IG$.

(b) If P, Q, R are the midpoints of BC, CA, AB respectively, then the incentre of $\triangle PQR$ is the midpoint of TN.

32. The cyclic quadrilateral $ABCD$ satisfies $AD + BC = AB$. Prove that the internal bisectors of $\angle ADC$ and $\angle BCD$ intersect on AB.

33. Let ℓ be a line through the orthocentre H of a triangle $\triangle ABC$. Prove that the reflections of ℓ across AB, BC, CA pass through a common point lying on the circumcircle of $\triangle ABC$.

34. If circle O with radius r_1 intersect the sides of triangle ABC in six points. Prove that $r_1 \geq r$, where r is the inradius.

35. Construct a right angled triangle given its hypotenuse and the fact that the median falling on hypotenuse is the geometric mean of the legs of the triangle.

36. Find the angles of the triangle which satisfies $R(b + c) = a\sqrt{bc}$ where a, b, c, R are the sides and the circumradius of the triangle.

37. (MOP 1998) Let $ABCDEF$ be a cyclic hexagon with $AB = CD = EF$. Prove that the intersections of AC with BD, of CE with DF, and of EA with FB form a triangle similar to $\triangle BDF$.

38. $\triangle ABC$ is right-angled and assume that the perpendicular bisectors of BC, CA, AB cut its incircle (I) at three chords. Show that the lengths of these chords form a right-angled triangle.

39. We have a trapezoid $ABCD$ with the bases AD and BC. $AD = 4$, $BC = 2$, $AB = 2$. Find possible values of $\angle ACD$.

40. Find all convex polygons such that one angle is greater than the sum of the other angles.

40. If $A_1A_2A_3 \cdots A_n$ is a regular n-gon and P is any point on its circumcircle, then prove that

(i) $PA_1^2 + PA_2^2 + PA_3^2 + \cdots + PA_n^2$ is constant;

(ii) $PA_1^4 + PA_2^4 + PA_3^4 + \cdots + PA_n^4$ is constant.
41. In a triangle ABC the incircle γ touches the sides BC, CA, AD at D, E, F respectively. Let P be any point within γ and let the segments AP, BP, CP meet γ at X, Y, Z respectively. Prove that DX, EY, FZ are concurrent.

42. $ABCD$ is a convex quadrilateral which has incircle (I, r) and circumcircle (O, R), show that:

$$2R^2 \geq IA \cdot IC + IB \cdot ID \geq 4r^2$$

43. Let P be any point in $\triangle ABC$. Let AP, BP, CP meet the circumcircle of $\triangle ABC$ again at A_1, B_1, C_1 respectively. A_2, B_2, C_2 are the reflections of A_1, B_1, C_1 about the sides BC, AC, AB respectively. Prove that the circumcircle of $\triangle A_2B_2C_2$ passes through a fixed point independent of P.

44. A point P inside a circle is such that there are three chords of the same length passing through P. Prove that P is the center of the circle.

45. $\triangle ABC$ is right-angled with $\angle BAC = 90^\circ$. H is the orthogonal projection of A on BC. Let r_1 and r_2 be the inradii of the triangles $\triangle ABH$ and $\triangle ACH$. Prove

$$AH = r_1 + r_2 + \sqrt{r_1^2 + r_2^2}$$

46. Let ABC be a right angle triangle with $\angle BAC = 90^\circ$. Let D be a point on BC such that the inradius of $\triangle BAD$ is the same as that of $\triangle CAD$. Prove that AD^2 is the area of $\triangle ABC$.

47. τ is an arbitrary tangent to the circumcircle of $\triangle ABC$ and X, Y, Z are the orthogonal projections of A, B, C on τ. Prove that with appropriate choice of signs we have:

$$\pm BC\sqrt{AX} \pm CA\sqrt{BY} \pm AB\sqrt{CZ} = 0$$

48. Let $ABCD$ be a convex quadrilateral such that $AB + BC = CD + DA$. Let I, J be the incentres of $\triangle BCD$ and $\triangle DAB$ respectively. Prove that AC, BD, IJ are concurrent.

49. $\triangle ABC$ is equilateral with side length L. P is a variable point on its incircle and A', B', C' are the orthogonal projections of P onto BC, CA, AB. Define ω_1, ω_2, ω_3 as the circles tangent to the circumcircle of $\triangle ABC$ at its minor arcs BC, CA, AB and tangent to BC, CA, AB at A', B', C' respectively. δ_{ij} stands for the length of the common external tangent of the circles ω_i, ω_j. Show that $\delta_{12} + \delta_{23} + \delta_{31}$ is constant and compute such value.

50. It is given a triangle $\triangle ABC$ with $AB \neq AC$. Construct a tangent line τ to its incircle (I) which meets AC, AB at X, Y such that:

$$\frac{AX}{XC} + \frac{AY}{YB} = 1.$$
51. In $\triangle ABC$, $AB + AC = 3 \cdot BC$. Let the incentre be I and the incircle be tangent to AB, AC at D, E respectively. Let D', E' be the reflections of D, E about I. Prove that $BCD'E'$ is cyclic.

52. $\triangle ABC$ has incircle (I, r) and circumcircle (O, R). Prove that, there exists a common tangent line to the circumcircles of $\triangle OBC$, $\triangle OCA$ and $\triangle OAB$ if and only if:

$$\frac{R}{r} = \sqrt{2} + 1$$

53. In a $\triangle ABC$, prove that

$$a \cdot AI^2 + b \cdot BI^2 + c \cdot CI^2 = abc$$

54. In cyclic quadrilateral $ABCD$, $\angle ABC = 90^\circ$ and $AB = BC$. If the area of $ABCD$ is 50, find the length BD.

55. Given four points A, B, C, D in a straight line, find a point O in the same straight line such that $OA : OB = OC : OD$.

56. Let the incentre of $\triangle ABC$ be I and the incircle be tangent to BC, AC at E, D. Let M, N be midpoints of AB, AC. Prove that BI, ED, MN are concurrent.

57. Let O and H be circumcenter and orthocenter of ABC respectively. The perpendicular bisector of AH meets AB and AC at D and E respectively. Show that $\angle AOD = \angle AOE$.

58. Given a semicircle with diameter AB and center O and a line, which intersects the semicircle at C and D and line AB at M ($MB < MA$, $MD < MC$). Let K be the second point of intersection of the circumcircles of $\triangle AOC$ and $\triangle DOB$. Prove that $\angle MKO = 90^\circ$.

59. In the trapezoid $ABCD$, $AB \parallel CD$ and the diagonals intersect at O. P, Q are points on AD and BC respectively such that $\angle APB = \angle CPD$ and $\angle AQB = \angle CQD$. Show that $OP = OQ$.

60. In cyclic quadrilateral $ABCD$, $\angle ACD = 2\angle BAC$ and $\angle ACB = 2\angle DAC$. Prove that $BC + CD = AC$.

61. $\triangle ABC$ is right with hypotenuse BC. P lies on BC and the parallels through P to AC, AB meet the circumferences with diameters PC, PB again at U, V respectively. Ray AP cuts the circumcircle of $\triangle ABC$ at D. Show that $\angle UDV = 90^\circ$.

62. Let $ABEF$ and $ACGH$ be squares outside $\triangle ABC$. Let M be the midpoint of EG. Show that $\triangle MBC$ is an isoceles right triangle.

63. The three squares ACC_1A'', ABB_1A', $BCDE$ are constructed externally on the sides of a triangle ABC. Let P be the center of $BCDE$. Prove that the lines $A'C$, $A''B$, PA are concurrent.
64. For triangle \(ABC\), \(AB < AC\), from point \(M\) in \(AC\) such that \(AB + AM = MC\). The straight line perpendicular \(AC\) at \(M\) cut the bisection of \(BC\) in \(I\). Call \(N\) is the midpoint of \(BC\). Prove that is \(MN\) perpendicular to the \(AI\).

65. Let \(ABC\) be a triangle with \(AB \neq AC\). Point \(E\) is such that \(AE = BE\) and \(BE \perp BC\). Point \(F\) is such that \(AF = CF\) and \(CF \perp BC\). Let \(D\) be the point on line \(BC\) such that \(AD\) is tangent to the circumcircle of triangle \(ABC\). Prove that \(D, E, F\) are collinear.

66. Points \(D, E, F\) are outside triangle \(ABC\) such that \(\angle DBC = \angle FBA\), \(\angle DCB = \angle ECA\), \(\angle EAC = \angle FAB\). Prove that \(AD, BE, CF\) are concurrent.

67. In \(\triangle ABC\), \(\angle C = 90^\circ\), and \(D\) is the perpendicular from \(C\) to \(AB\). \(\omega\) is the circumcircle of \(\triangle BCD\). \(\omega_1\) is a circle tangent to \(AC\), \(AB\), and \(\omega\). Let \(M\) be the point of tangency of \(\omega_1\) with \(AB\). Show that \(BM = BC\).

68. Acute triangle \(\triangle ABC\) has orthocenter \(H\) and semiperimeter \(s\). \(r_a, r_b, r_c\) denote its exradii and \(\varrho_a, \varrho_b, \varrho_c\) denote the inradii of triangles \(\triangle HBC\), \(\triangle HCA\) and \(\triangle HAB\). Prove that:

\[r_a + r_b + r_c + \varrho_a + \varrho_b + \varrho_c = 2s \]

69. The lengths of the altitudes of a triangle are 12,15,20. Find the sides of the triangle and the area of the triangle?

70. Suppose, in an obtuse angled triangle, the orthic triangle is similar to the original triangle. What are the angles of the obtuse triangle?

71. In triangle \(\triangle ABC\) with semiperimeter \(s\), the incircle \((I, r)\) touches side \(BC\) in \(X\). If \(h\) represents the length of the altitude from vertex \(A\) to \(BC\). Show that

\[AX^2 = 2r \cdot h + (s - a)^2 \]

72. Let \(E, F\) be on \(AB\), \(AD\) of a cyclic quadrilateral \(ABCD\) such that \(AE = CD\) and \(AF = BC\). Prove that \(AC\) bisects the line \(EF\).

73. Suppose \(X\) and \(Y\) are two points on side \(BC\) of triangle \(ABC\) with the following property: \(BX = CY\) and \(\angle BAX = \angle CAY\). Prove \(AB = AC\).

74. \(ABC\) is a triangle in which \(I\) is its incenter. The incircle is drawn and 3 tangents are drawn to the incircle such that they are parallel to the sides of \(ABC\). Now, three triangle are formed near the vertices and their incircles are drawn. Prove that the sum of the radii of the three incircles is equal to the radius of the the incircle of \(ABC\).

75. With usual notation of \(I\), prove that the Euler lines of \(\triangle IBC\), \(\triangle ICA\), \(\triangle IAB\) are concurrent.
76. Vertex A of $\triangle ABC$ is fixed and B, C move on two fixed rays Ax, Ay such that $AB + AC$ is constant. Prove that the loci of the circumcenter, centroid and orthocenter of $\triangle ABC$ are three parallel lines.

77. $\triangle ABC$ has circumcentre O and incentre I. The incentre touches BC, AC, AB at D, E, F and the midpoints of the altitudes from A, B, C are P, Q, R. Prove that DP, EQ, FR, OI are concurrent.

78. The incircle Γ of the equilateral triangle $\triangle ABC$ is tangent to BC, CA, AB at M, N, L. A tangent line to Γ through its minor arc NL cut AB, AC at P, Q. Show that:

\[
\frac{1}{[MPB]} + \frac{1}{[MQC]} = \frac{6}{[ABC]}
\]

79. A and B are on a circle with center O such that AOB is a quarter of the circle. Square $OEDC$ is inscribed in the quarter circle, with E on OB, D on the circle, and C on OA. Let F be on arc AD such that CD bisects $\angle FCB$. Show that $BC = 3 \cdot CF$.

80. Take a circle with a chord drawn in it, and consider any circle tangent to both the chord and the minor arc. Let the point of tangency for the small circle and the chord be X. Also, let the point of tangency for the small circle and the minor arc be Y. Prove that all lines XY are concurrent.

81. Two circles intersect each other at A and B. Line PT is a common tangent, where P and T are the points of tangency. Let S be the intersection of the two tangents to the circumcircle of $\triangle APT$ at P and T. Let H be the reflection of B over PT. Show that A, H, and S are collinear.

82. In convex hexagon $ABCDEF$, $AD = BC + EF$, $BE = CD + AF$ and $CF = AB + DE$. Prove that

\[
\frac{AB}{DE} = \frac{CD}{AF} = \frac{EF}{BC}.
\]

83. The triangle ABC is scalene with $AB > AC$. M is the midpoint of BC and the angle bisector of $\angle BAC$ hits the segment BC at D. N is the perpendicular foot from C to AD. Given that $MN = 4$ and $DM = 2$. Compute the value $AM^2 - AD^2$.

84. A, B, C, and D are four points on a line, in that order. Isosceles triangles AEB, BFC, and CGD are constructed on the same side of the line, with $AE = EB = BF = FC = CG = GD$. H and I are points so that $BEHF$ and $CFIG$ are rhombi. Finally, J is a point such that $FHJI$ is a rhombus. Show that $JA = JD$.

85. A line through the circumcenter O of $\triangle ABC$ meets sides AB and AC at M and N, respectively. Let R and S be the midpoints of CM and BN respectively. Show that $\angle BAC = \angle ROS$.

8
86. Let AB be a chord in a circle and P a point on the circle. Let Q be the foot of the perpendicular from P to AB, and R and S the feet of the perpendiculars from P to the tangents to the circle at A and B. Prove that $PQ^2 = PR \cdot PS$.

87. Given a circle ω with diameter AB, a line outside the circle d is perpendicular to AB closer to B than A. $C \in \omega$ and $D = AC \cap d$. A tangent from D is drawn to E on ω such that B, E lie on same side of AC. $F = BE \cap d$ and $G = FA \cap \omega$ and $G' = FC \cap \omega$. Show that the reflection of G across AB is G'.

88. $\triangle ABC$ is acute and its angles α, β, γ are measured in radians. S and S_0 represent the area of $\triangle ABC$ and the area bounded/overlapped by the three circles with diameters BC, CA, AB respectively. Show that:

$$S + 2S_0 = \frac{a^2}{2} \left(\frac{\pi}{2} - \alpha \right) + \frac{b^2}{2} \left(\frac{\pi}{2} - \beta \right) + \frac{c^2}{2} \left(\frac{\pi}{2} - \gamma \right)$$

89. $\triangle ABC$ be an isosceles triangle with $AB = AC$ and $\angle A = 30^\circ$. The triangle is inscribed in a circle with center O. The point D lies on the arch between A and C such that $\angle DOC = 30^\circ$. Let G be the point on the arch between A and B such that $AC = DG$ and $AG < BG$. The line DG intersects AC and AB in E and F respectively.

(a) Prove that $\triangle AFG$ is equilateral.

(b) Find the ratio between the areas $\frac{\triangle AFG}{\triangle ABC}$.

90. Construct a triangle ABC given the lengths of the altitude, median and inner angle bisector emerging from vertex A.

91. Let P be a point in $\triangle ABC$ such that $\frac{AB}{PC} = \frac{AP}{PC}$. Prove that $\angle PBC + \angle PAC = \angle PBA + \angle PCA$.

92. Point D lies inside the equilateral $\triangle ABC$, such that $DA^2 = DB^2 + DC^2$. Show that $\angle BDC = 150^\circ$.

93. (China MO 1998) Find the locus of all points D with respect to a given triangle $\triangle ABC$ such that

$$DA \cdot DB \cdot AB + DB \cdot DC \cdot BC + DC \cdot DA \cdot CA = AB \cdot BC \cdot CA.$$

94. Let P be a point in equilateral triangle ABC. If $\angle BPC = \alpha$, $\angle CPA = \beta$, $\angle APB = \gamma$, find the angles of the triangle with side lengths PA, PB, PC.

95. Of a $\square ABCD$, let P, Q, R, S be the midpoints of the sides AB, BC, CD, DA. Show that if $\triangle AQR$ and $\triangle CSP$ are equilateral, then $\square ABCD$ is a rhombus. Also find its angles.
96. In \(\triangle ABC \), the incircle touches \(BC \) at the point \(X \). \(A' \) is the midpoint of \(BC \). \(I \) is the incentre of \(\triangle ABC \). Prove that \(A'I \) bisects \(AX \).

97. In convex quadrilateral \(ABCD \), \(\angle BAC = 80^\circ \), \(\angle BCA = 60^\circ \), \(\angle DCA = 70^\circ \), \(\angle DCA = 40^\circ \). Find \(\angle DBC \).

98. It is given a \(\triangle ABC \), and let \(X \) be an arbitrary point inside the triangle. If \(XD \perp AB \), \(XE \perp BC \), \(XF \perp AC \), where \(D \in AB \), \(E \in BC \), \(F \in AC \), then prove that:

\[
AX + BX + CX \geq 2(XD +XE +XF)
\]

99. Let \(A_1 \), \(A_2 \), \(A_3 \) and \(A_4 \) be four circles such that the circles \(A_1 \) and \(A_3 \) are tangential at a point \(P \), and the circles \(A_2 \) and \(A_4 \) are also tangential at the same point \(P \). Suppose that the circles \(A_1 \) and \(A_2 \) meet at a point \(T_1 \), the circles \(A_2 \) and \(A_3 \) meet at a point \(T_2 \), the circles \(A_3 \) and \(A_4 \) meet at a point \(T_3 \), and the circles \(A_4 \) and \(A_1 \) meet at a point \(T_4 \), such that all these four points \(T_1 \), \(T_2 \), \(T_3 \), \(T_4 \) are distinct from \(P \). Prove that

\[
\left(\frac{T_1 T_2}{T_2 T_3} \right) \cdot \left(\frac{T_2 T_3}{T_3 T_4} \right) = \left(\frac{PT_2}{PT_4} \right)^2
\]

100. \(ABCD \) is a convex quadrilateral such that \(\angle ADB + \angle ACB = 180^\circ \). It’s diagonals \(AC \) and \(BD \) intersect at \(M \). Show that

\[
AB^2 = AM \cdot AC + BM \cdot BD
\]

101. Let \(AH \), \(BM \) be the altitude and median of triangle \(ABC \) from \(A \) and \(B \). If \(AH = BM \), find \(\angle MBC \).

102. \(P \), \(Q \), \(R \) are random points in the interior of \(BC \), \(CA \), and \(AB \) respectively of a non-degenerate triangle \(ABC \) such that the circumcircles of \(BPR \) and \(CQP \) are orthogonal and intersect in \(M \) other than \(P \). Prove that \(PR \cdot MQ \), \(PQ \cdot MR \), \(QR \cdot MP \) can be the sides of a right angled triangle.

103. \(\triangle ABC \) is scalene and \(D \) is a point on the arc \(BC \) of its circumscribed circle which doesn’t contain \(A \). Perpendicular bisectors of \(AC \), \(AB \) cut \(AD \) at \(Q \), \(R \). If \(P = BR \cap CQ \), then show that \(AD = PB + PC \).

104. It is given \(\triangle ABC \) and \(M \) is the midpoint of the segment \(AB \). Let \(\ell \) pass through \(M \) and \(\ell \cap AC = K \) and \(\ell \cap BC = L \), such that \(CK = CL \). Let \(CD \perp AB \), \(D \in AB \) and \(O \) is the center of the circle, circumscribed around \(\triangle CKL \). Prove that \(OM = OD \).

105. Prove that: The locus of points \(P \) in the plane of an acute triangle \(\triangle ABC \) which satisfy that the length of segments \(PA \), \(PB \), \(PC \) can form a right triangle is the union of three circumferences, whose centers are the reflections of \(A \), \(B \), \(C \) across the midpoints of \(BC \), \(CA \), \(AB \) and whose radii are given by \(\sqrt{b^2 + c^2 - a^2} \), \(\sqrt{a^2 + c^2 - b^2} \), \(\sqrt{a^2 + b^2 - c^2} \).
106. Let D, E be points on the rays BA, CA respectively such that $BA \cdot BD + CA \cdot CE = BC^2$. Prove that $\angle CDA = \angle BEC$.

107. In triangle ABC, M, N, P are points on sides BC, CA, AB respectively such that perimeter of the triangle MNP is minimal. Prove that triangle MNP is the orthic triangle of ABC (the triangle formed by the foot of the perpendiculars on the sides as vertices).

108. Prove that there exists an inversion mapping two non-intersecting circles into concentric circles.

109. Let α, β, γ be three circles concurring at M. AM, BM, CM are the common chords of α, β, γ; α, β, γ; and γ, α, β respectively. AM, BM, CM intersect γ, α, β at P, Q, R respectively. Prove that $AQ \cdot BR \cdot CP = AR \cdot BP \cdot CQ$.

110. In triangle $\triangle ABC$, lines ℓ_b and ℓ_c are perpendicular to BC through vertices B, C respectively. P is a variable point on line BC and the perpendicular lines dropped from P to AB, AC cut ℓ_b, ℓ_c at U, V respectively. Show that UV always passes through the orthocenter of $\triangle ABC$.

111. Let I be the incenter of triangle ABC and M is the midpoint of BC. The excircle opposite A touches the side BC at D. Prove that $AD \parallel IM$.

112. An incircle of ABC triangle tangents BC, CA and AB sides at A_1, B_1 and C_1 points, respectively. Let O and I be circumcenter and incenter and $OI \cap BC = D$. A line through A_1 point and perpendicular to B_1C_1 cut AD at E. Prove that M point lies on B_1C_1 line. (M is midpoint of EA_1).

113. Parallels are drawn to the sides of the triangle ABC such that the lines touch the in-circle of ABC. The lengths of the tangents within ABC are x, y, z respectively opposite to sides a, b, c respectively. Prove the relation: $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

114. In an acute angled triangle ABC, the points D, E, F are on sides BC, CA, AB respectively, such that $\angle AFE = \angle BFD, \angle FDB = \angle EDC, \angle DEC = \angle FEA$. Prove that DEF is the orthic triangle of ABC.

115. Let ω be circle and tangents AB, AC sides and circumcircle/externally and at D point. Prove that circumcenter of $\triangle ABC$ lies on bisector of $\angle BDC$.

116. Construct a triangle with ruler-compass operations, given its inradius, circumradius and any altitude.

117. Let AD, BM, CH be the angle bisector, median, altitude from A, B, C of $\triangle ABC$. If $AD = BM = CH$, prove that $\triangle ABC$ is equilateral.
118. Consider a triangle ABC with $BC = a$, $CA = b$, $AB = c$ and area equal to 4. Let x, y, z the distances from the orthocenter to the vertices A, B, C. Prove that if $a\sqrt{x} + b\sqrt{y} + c\sqrt{z} = 4\sqrt{a+b+c}$, then ABC is equilateral.

119. Suppose that $\angle A$ is the smallest of the three angles of triangle ABC. Let D be a point on the arc BC of the circumcircle of $\triangle ABC$ not containing A. Let the perpendicular bisectors of AB, AC intersect AD at M and N respectively. Let BM and CN meet at T. Prove that $BT + CT \leq 2R$ where R is the circumradius of triangle ABC.

120. Points E, F are taken on the side AB of triangle ABC such that the lengths of CE and CF are both equal to the semiperimeter of the triangle ABC. Prove that the circumcircle of CEF is tangent to the excircle of triangle ABC opposite C.

121. Two fixed circles ω_1, ω_2 intersect at A, B. A line ℓ through A cuts ω_1, ω_2 again at U, V. Show that the perpendicular bisector of UV goes through a fixed point as line ℓ spins around A.

122. Let $\triangle ABC$ be an isosceles triangle with $AB = AC$. Let X and Y be points on sides BC and CA such that $XY \parallel AB$. Let D be the circumcenter of $\triangle CXY$ and E be the midpoint of BY. Prove that $\angle AED = 90^\circ$.

123. Tetrahedron $ABCD$ is featured on ball (centre S, $r = 1$) and $SA \geq SB \geq SD$. Prove that $SA > \sqrt{5}$.

124. Let $ABCD$ be a cyclic quadrilateral. The lines AB and CD intersect at the point E, and the diagonals AC and BD at the point F. The circumcircle of the triangles AFD and BFC intersect again at H. Prove that $EHF = 90^\circ$.

125. $ABCD$ is a cyclic and circumscribed quadrilateral whose incircle touches the sides AB, BC, CD, DA at E, F, G, H. Prove that $EG \perp FH$.

126. Let τ be an arbitrary tangent line to the circumcircle (O, R) of $\triangle ABC$. $\delta(P)$ stands for the distance from point P to τ. If I, I_a, I_b, I_c denote the incenter and the three excenters of $\triangle ABC$, prove with appropriate choice of signs that:

$$\pm \delta(I) \pm \delta(I_a) \pm \delta(I_b) \pm \delta(I_c) = 4R$$

127. Let ABC be a fixed triangle and β, γ are fixed angles. Let α be a variable angle. Let E, F be points outside $\triangle ABC$ such that $\angle FBA = \beta$, $\angle FAB = \alpha$, $\angle ECA = \gamma$, $\angle EAC = \alpha$. Prove that the intersection of BE, CF lies on a fixed line independent of α.

128. Incircle (I) of $\triangle ABC$ touches BC, CA, AB at D, E, F and BI, CI cut CA, AB at M, N. Line MN intersects (I) at two points, let P be one of these points. Show that the lengths of segments PD, PE, PF form a right triangle.

12
129. Given a triangle \(ABC \) with orthocentre \(H \), circumcentre \(O \), incentre \(I \) and \(D \) is the tangency point of incircle with \(BC \). Prove that if \(OI \) and \(BC \) are parallel, then \(AO \) and \(HD \) are parallel as well.

130. Let \(ABCD \) be a cyclic quadrilateral such that \(\frac{AB}{BD} = \frac{AD}{DC} \). The circle passing through \(A, B \) and tangent to \(AD \) intersects \(CB \) at \(E \). The circle passing through \(A, D \) and tangent to \(AB \) intersects \(CD \) at \(F \). Prove that \(BEFD \) is cyclic.

131. Given two points \(A, B \) and a circle \((O) \) not containing \(A, B \). Consider the radical axis of an arbitrary circle passing through \(A, B \) and \((O) \). Prove that all such radical axes passes through a fixed point \(P \) and construct it.

132. Given a sphere of radius one that tangents the six edges of an arbitrary tetrahedron. Find the maximum possible volume of the tetrahedron.

133. Let \(ABC \) be a triangle for which exists \(D \in BC \) so that \(AD \perp BC \). Denote \(r_1, r_2 \) the lengths of inradius for the triangles \(ABD, ADC \) respectively. Prove that

\[
ar_1 + (s - a)(s - c) = ar_2 + (s - a)(s - b) = sr
\]

134. Let \(M \) be the midpoint of \(BC \) of triangle \(ABC \). Suppose \(D \) is a point on \(AM \). Prove that \(\angle DBC = \angle DAB \) if and only if \(\angle DCB = \angle DAC \).

135. \(P \) and \(R \) are two given points on a circle \(\Omega \). Let \(O \) be an arbitrary point on the perpendicular bisector of \(PR \). A circle with centre \(O \) intersects \(OP \) and \(OR \) at the points \(M, N \) respectively. The tangents to this circle at \(M \) and \(N \) meet \(\omega \) at points \(Q \) and \(S \) respectively such that \(P, Q, R, S \) lie on \(\Omega \) in this order. \(PQ \) and \(RS \) intersect at \(K \). Show that the line joining the midpoints of \(PQ \) and \(RS \) is perpendicular to \(OK \).

136. In cyclic quadrilateral \(ABCD \), \(AB = 8 \), \(BC = 6 \), \(CD = 5 \), \(DA = 12 \). Let \(AB \) intersect \(DC \) at \(E \). Find the length \(EB \).

137. In triangle \(ABC \), let \(\Gamma \) be a circle passing through \(B \) and \(C \) and intersecting \(AB \) and \(AC \) at \(M, N \) respectively. Prove that the locus of the midpoint of \(MN \) is the \(A \)-symmedian of the triangle.

138. Let \(ABC \) be a triangle \(E \) is the excenter of \(\triangle ABC \) opposite \(A \). If \(AC + CB = AB + BE \), find \(\angle ABC \).

139. In a given line segment \(AB \), choose an arbitrary point \(C \) in the interior. The point \(D, E, \ F \) are the midpoints of the segments \(AC, CB \) and \(AB \) respectively, and consider the point \(X \) in the interior of the line segment \(CF \) such that \(\frac{BX}{DX} = 2 \). Prove that

\[
\frac{BX}{DX} = \frac{AX}{XE} = 2
\]
140. Diagonals of a convex quadrilateral with an area of Q divide it into four triangles with appropriate areas P_1, P_2, P_3, P_4. Prove that

$$P_1 \cdot P_2 \cdot P_3 \cdot P_4 = \frac{(P_1 + P_2)^2 \cdot (P_2 + P_3)^2 \cdot (P_3 + P_4)^2 \cdot (P_4 + P_1)^2}{Q^4}$$

141. Let the incircle ω of a triangle $\triangle ABC$ touches its sides BC, CA, AB at the points D, E, F respectively. Now, let the line parallel to AB through E meets DF at Q, and the parallel to AB through D meets EF at T. Prove that the lines CF, DE, QT are concurrent.

142. $ABCDEF$ is a hexagon whose opposite sides are parallel, this is, $AB \parallel DE$, $BC \parallel EF$ and $CD \parallel FA$. Show that triangles $\triangle ACE$ and $\triangle BDF$ have equal area.

143. Given a circle ω and a point A outside it. Construct a circle γ with centre A orthogonal to ω.

144. Prove that the circumcircles of the four triangles in a complete quadrilateral meet at a point. (Miquel Point)

145. Prove that the symmedian point of a triangle is the centroid of it’s pedal triangle with respect to that triangle.

146. Quadrilateral $ABCD$ is convex with circumcircle (O), O lies inside $ABCD$. Its diagonals AC, BD intersect at S and let M, N, L, P be the orthogonal projections of S onto sides AB, BC, CD, DA. Prove that $[ABCD] \geq 2[MNLP]$.

147. Let ω be a circle in which AB and CD are parallel chords and ℓ is a line from C, that intersects AB in its midpoint L and $\ell \cap \omega = E$. K is the midpoint of DE. Prove that KE is the angle bisector of $\angle AKB$.

148. Let ABC be an equilateral triangle and D, E be on the same side as C with the line AB, and BD is between BA, BE. Suppose $\angle DBE = 90^\circ$, $\angle EDB = 60^\circ$. Let F be the reflection of E about the point C. Prove that $FA \perp AD$.

149. In cyclic quadrilateral $ABCD$, $AC \cdot BD = 2 \cdot AB \cdot CD$. E is the midpoint of AC. Prove that circumcircle of ADE is tangential to AB.

150. $ABCD$ is a rhombus with $\angle BAD = 60^\circ$. Arbitrary line ℓ through C cuts the extension of its sides AB, AD at M, N respectively. Prove that lines DM and BN meet on the circumcircle of $\triangle BAD$.

151. Let ABC be a triangle. Prove that there is a line(in the plane of ABC) such that the intersection of the interior of triangle ABC and interior of its reflection $A'B'C'$ has more than $2/3$ the area of triangle ABC.

14
152. In triangle ABC, D, E, F are feet of perpendiculars from A, B, C to BC, AC, AB. Prove that the orthocenter of $\triangle ABC$ is the incenter of $\triangle DEF$.

153. Let ABC be a triangle right-angled at A and ω be its circumcircle. Let ω_1 be the circle touching the lines AB and AC, and the circle ω internally. Further, let ω_2 be the circle touching the lines AB and AC and the circle ω externally. If r_1, r_2 be the radii of ω_1, ω_2 prove that $r_1 \cdot r_2 = 4A$ where A is the area of the triangle ABC.

154. The points D, E and F are chosen on the sides BC, AC and AB of triangle ABC, respectively. Prove that triangles ABC and DEF have the same centroid if and only if

$$\frac{BD}{DC} = \frac{CE}{EA} = \frac{AF}{FB}$$

155. Tangents to a circle form an external point A are drawn meeting the circle at B, C respectively. A line passing through A meets the circle at D, E respectively. F is a point on the circle such that BF is parallel to DE. Prove that FC bisects DE.

156. Let E be the intersection of the diagonals of the convex quadrilateral $ABCD$. Define $[T]$ to be the area of triangle T. If $[ABE] + [CDE] = [BCE] + [DAE]$, prove that one of the diagonals bisect the other.

157. A line intersects AB, BC, CD, DA of quadrilateral $ABCD$ in the points K, L, M, N. Prove that

$$\frac{AK}{KB} \cdot \frac{BL}{LC} \cdot \frac{CM}{MD} \cdot \frac{DN}{NA} = 1$$

in magnitudes.

158. Let PQ be a chord of a circle. Let the midpoint of PQ be M. Let AB and CD be two chords passing through M. Let AC and BD meet PQ at H, K respectively. Prove that

$$\frac{HAHC}{HM^2} = \frac{KBKD}{KM^2}$$

159. Let $ABCD$ be a trapezium with $AB \parallel CD$. Prove that

$$(AB^2+AC^2-BC^2)(DB^2+DC^2-BC^2) = (BA^2+BD^2-AD^2)(CA^2+CD^2-AD^2)$$

160. Given a rectangle $ABCD$ and a point P on its boundary. Let S be the sum of the distances of P from AC and BD. Prove that S is constant as P varies on the boundary.

161. Let P and Q be two points on a semicircle whose diameter is XY (P nearer to X). Join XP and YQ and let them meet at B. Let the tangents from P and Q meet at R. Prove that BR is perpendicular to XY.

15
162. Let a cyclic quadrilateral $ABCD$. L is the intersection of AC and BD and $S = AD \cap BC$. Let M, N is midpoints of AB, CD. Prove that SL is a tangent of (MNL).

163. Let ABC be a right triangle with $\angle A = 90^\circ$. Let D be such that $CD \perp BC$. Let O be the midpoint of BC. DO intersect AB at E. Prove that $\angle ECB = \angle ADC + \angle ACD$.

164. Given a circle ω and a point A outside it. A circle ω' passing through A is tangential to ω at B. The tangents to ω' at A, B intersect in M. Find the locus of M.

165. Triangle $\triangle ABC$ has incircle (I) and circumcircle (O). The circle with center A and radius AI cuts (O) at X, Y. Show that line XY is tangent to (I).

166. Let $ABCD$ be a cyclic quadrilateral with circumcircle ω. Let AB intersect DC at E. The tangent to ω at D intersect BC at F. The tangent to ω at C intersect AD at G. Prove that E, F, G are collinear.

167. Let ABC is a right triangle with $C = 90^\circ$. H is the leg of the altitude from C, M is the mid-point of AB. P is a point in ABC such that $AP = AC$. Prove that PM is the bisector of $\angle HPA$ if and only if $A = 60^\circ$.

168. Two circles w_1 and w_2 meets at points P,Q. C is any point on w_1 different from P,Q. CP meets w_2 at point A. CQ meets w_2 at point B. Find locus for ABC triangle’s circumcircle’s centres.

169. Consider a triangle $\triangle ABC$ with incircle (I) touching its sides BC, CA, AB at A_0, B_0, C_0 respectively. The triangle $\triangle A_0B_0C_0$ is called the intouch triangle of $\triangle ABC$. Likewise, the triangle formed by the points of tangency of an excircle with the sidelines of $\triangle ABC$ is called an extouch triangle. Let S_0, S_1, S_2, S_3 denote the areas of the intouch triangle and the three extouch triangles respectively. Show that:

$$\frac{1}{S_0} = \frac{1}{S_1} + \frac{1}{S_2} + \frac{1}{S_3}$$

170. Let $ABCD$ be a convex quadrilateral such that $\angle DAB = 90^\circ$ and $DA = DC$. Let E be on CD such that $EA \perp BD$. Let F be on BD such that $FC \perp DC$. Prove that $BC \parallel FE$.

171. (China TST 2007) Let ω be a circle with centre O. Let A, B be two points on its perimeter, and let CS and CT be two tangents drawn to ω from a point C outside the circle. Let M be the midpoint of the minor arc \overline{AB}. MS and MT intersect \overline{AB} in E, F respectively. The lines passing through E, F perpendicular to AB cut OS, OT at X and Y respectively. Let ℓ be an arbitrary line cutting ω at the points P and Q respectively. Denote $R = MP \cap AB$. If Z is the circumcentre of triangle PQR, prove that X, Y, Z are collinear.
172. Let $ABCD$ be a convex quadrilateral such that $\angle ABC = \angle ADC$. Let E be the foot of perpendicular from A to BC and F is the foot of perpendicular from A to CD. Let M be the midpoint of BD. Prove that $ME = MF$.

173. Let H, K, I be the feet of the altitude from A, B, C of triangle ABC. Let M, N be the feet of the altitude from K, I of triangle AIK. Let P, Q be the point on HI, HK such that AP, AQ be perpendicular to HI, HK respectively. Prove that M, N, P, Q are collinear.

174. We have a $\triangle ABC$ with $\angle BAC = 90^\circ$. D is constructed such that $AB = BD$ and A, B, D are three different collinear points. X is the foot of the altitude through A in $\triangle ABC$. Y is the midpoint of CX. Construct the circle τ with diameter CX. AC intersects τ again in F and AY intersects τ at G, H. Prove that DX, CG, HF are concurrent.

175. Let $ABCDE$ be a convex pentagon such that $\angle EAB = 90^\circ$, $EB = ED$, $AB = DC$ and $AB \parallel DC$. Prove that $\angle BED = 2\angle CAB$.

176. A straight line intersects the AB, BC internally and AC externally of triangles ABC in the points D, E, F respectively. Prove that the midpoints of AE, BF, CD are collinear.

177. Inside an acute triangle ABC is chosen point point K, such that $\angle AKC = 2\angle ABC$ and $\frac{AK}{KC} = \left(\frac{AB}{BC}\right)^2$. where A_1 and C_1 are the midpoints of BC and AB. Prove, that K lies on circumcircle of triangle A_1BC_1.

178. M is the midpoint of the side BC of $\triangle ABC$ and $AC = AM + AB$. Incircle (I) of $\triangle ABC$ cuts A-median AM at X, Y. Show that $\angle XAY = 120^\circ$.

179. Let ABC be an isosceles triangle with $AB = AC$. Let P, Q be points on the side BC such that $\angle APC = 2\angle AQB$. Prove that $BP = AP + QC$.

180. Let BC be a diameter of the circle O and let A be an interior point. Suppose that BA and CA intersect the circle O at D and E, respectively. If the tangents to the circle O at E and D intersect at the point M, prove that AM is perpendicular to BC.

181. Let ABC be triangle and G its centroid. Then for any point M, we have

$$MA^2 + MB^2 + MC^2 = 3MG^2 + GA^2 + GB^2 + GC^2.$$

182. Given two non-intersecting and non-overlapping circles and a point A lying outside the circles. Prove that there are exactly four circles(straight lines are also considered as circles) touching the given two circles and passing through A.

17
183. A non-isosceles triangle ABC is given. The altitude from B meets AC at E. The line through E perpendicular to the B-median meets AB at F and BC at G. Prove that $EF = EG$ if, and only if, $\angle ABC = 90^\circ$.

184. Given a triangle ABC and a point T on the plane whose projections on AB, AC are C_1, B_1 respectively. B_2 is on BT such that AB_2 is perpendicular to BT and C_2 is on CT such that AC_2 is perpendicular to CT. Prove that B_1B_2 and C_1C_2 intersect on BC.

185. Let $ABCD$ be a cyclic quadrilateral with $\angle BAD = 60^\circ$. Suppose $BA = BC + CD$. Prove that either $\angle ABD = \angle CBD$ or $\angle ABC = 60^\circ$.

186. In a quadrilateral $ABCD$ we have $AB \parallel CD$ and $AB = 2 \cdot CD$. A line ℓ is perpendicular to CD and contains the point C. The circle with centre D and radius DA intersects the line ℓ at points P and Q. Prove that $AP \perp BQ$.

187. In triangle ABC, a circle passes through A and B and is tangent to BC. Also, a circle that passes through B and C is tangent to AB. These two circles intersect at a point K other than B. If O is the circumcenter of ABC, prove that $\angle BKO = 90^\circ$.

188. Four points P, Q, R, S are taken on the sides AB, BC, CD, DA of a quadrilateral such that
\[
\frac{AP}{PB} \cdot \frac{BQ}{QC} \cdot \frac{CR}{RD} \cdot \frac{DS}{SA} = 1
\]
Prove that PQ and RS intersect on AC.

189. Let D be the midpoint of BC of triangle ABC. Let its incenter be I and AI intersects BC at E. Let the excircle opposite A touches the side BC at F. Let M be the midpoint of AF. Prove that AD, FI, EM are concurrent.

190. $\triangle ABC$ is scalene and its B- and C- excircles (I_b) and (I_c) are tangent to sideline BC at U, V. M is the midpoint of BC and P is its orthogonal projection onto line I_bI_c. Prove that A, U, V, P are concyclic.

191. Let H be the orthocenter of acute $\triangle ABC$. Let D, E, F be feet of perpendiculars from A, B, C onto BC, CA, AB respectively. Suppose the squares constructed outside the triangle on the sides BC, CA, AB has area S_a, S_b, S_c respectively. Prove that
\[
S_a + S_b + S_c = 2(AH \cdot AD + BH \cdot BE + CH \cdot CF)
\]

192. In rectangle $ABCD$, E is the midpoint of BC and F is the midpoint of AD. G is a point on AB (extended if necessary); GF and BD meet at H. Prove that EF is the bisector of angle GEH.

18
193. \(P \) is a point in the minor arc \(BC \) of the circumcircle of a square \(ABCD \), prove that
\[
\frac{PA + PC}{PB + PD} = \frac{PD}{PA}
\]

194. \(ABCD \) is a cyclic trapezoid with \(AB \parallel CD \). \(M \) is the midpoint of \(CD \) and \(AM \) cuts the circumcircle of \(ABCD \) again at \(E \). \(N \) is the midpoint of \(BE \). Show that \(NE \) bisects \(\angle CND \).

195. A line is drawn passing though the centroid of a \(\triangle ABC \) meeting \(AB \) and \(AC \) at \(M \) and \(N \) respectively. Prove that
\[
AM \cdot NC + AN \cdot MB = AM \cdot AN
\]

196. Let the isosceles triangle \(ABC \) where \(AB = AC \). The point \(D \) belongs to the side \(BC \) and the point \(E \) belongs to \(AC \). \(C = 50^\circ \), \(\angle ABD = 80^\circ \) and \(\angle ABE = 30^\circ \); find \(\angle BDE \).

197. Let \(S \) be the area of \(\triangle ABC \) and \(BC = a \). Let \(r \) be its inradius and \(r_a \) be its exradius opposite \(A \). Prove that
\[
S = \frac{arr_a}{r_a - r}
\]

198. A line segment \(AB \) is divided by internal points \(K, L \) such that \(AL^2 = AK \cdot AB \). A circle with centre \(A \) and radius \(AL \) is drawn. For any point \(P \) on the circle, prove that \(PL \) bisects \(\angle KPB \).

199. Let \(\triangle ABC \) be a triangle with \(\angle A = 60^\circ \). Let \(BE \) and \(CF \) be the internal angle bisectors of \(\angle B \) and \(\angle C \) with \(E \) on \(AC \) and \(F \) on \(AB \). Let \(M \) be the reflection of \(A \) in the line \(EF \). Prove that \(M \) lies on \(BC \). (Regional Olympiad 2010, India)

200. In triangle \(ABC \), \(Z \) is a point on the base \(BC \). Lines passing though \(B \) and \(C \) that are parallel to \(AZ \) meet \(AC \) and \(AB \) at \(X, Y \) respectively. Prove that:
\[
\frac{1}{BX} + \frac{1}{CY} = \frac{1}{AZ}
\]

201. Let \(ABCD \) be a trapezoid such that \(AB > CD \), \(AB \parallel CD \). Points \(K \) and \(L \) lie on the segments \(AB \) and \(CD \) respectively such that \(\frac{AK}{KB} = \frac{DL}{LC} \). Suppose that there are points \(P \) and \(Q \) on the segment \(KL \) satisfying \(\angle APB = \angle BCD \) and \(\angle CQD = \angle ABC \). Prove that \(P, Q, B, C \) are concyclic.

202. \(I \) is the incenter of \(\triangle ABC \). Let \(E \) be on the extension of \(CA \) such that \(CE = CB + BA \) and \(F \) is on the extension of \(BA \) such that \(BF = BC + CA \). If \(AD \) is the diameter of the circumcircle of \(\triangle ABC \), prove that \(DI \perp EF \).
203. $ABCD$ is a parallelogram with diagonals AC, BD. Circle Γ with diameter AC cuts DB at P, Q and tangent line to Γ through C cuts AB, AD at X, Y. Prove that points P, Q, X, Y are concyclic.

204. Two triangles have a common inscribed in and circumscribed circle. Sides of one of them relate to the inscribed circle at the points K, L and M, sides of another triangle at points K_1, L_1 and M_1. Prove that orthocentres of triangles KLM and $K_1L_1M_1$ are match.

205. $ABCD$ is a convex quadrilateral with $\angle BAD = \angle DCB = 90^\circ$. Let X and Y be the reflections of A and B about BD and AC respectively. $P \equiv XC \cap BD$ and $Q \equiv DY \cap CA$. Show that $AC \perp PQ$.

206. In triangle ABC, $\angle A = 2\angle B = 4\angle C$. Prove that

$$\frac{1}{AB} = \frac{1}{BC} + \frac{1}{AC}$$

207. Point P lies inside $\triangle ABC$ such that $\angle PBC = 70^\circ$, $\angle PCB = 40^\circ$, $\angle PBA = 10^\circ$ and $\angle PCA = 20^\circ$. Show that $AP \perp BC$.

208. The sides of a triangle are positive integers such that the greatest common divisor of any 2 sides is 1. Prove that no angle is twice of another angle in the triangle.

209. Two circles with centres A, B intersect on points M, N. Radii AP and BQ are parallel (on opposite sides of AB). If the common external tangents meet AB at D and PQ meet AB at C, prove that $\angle CND$ is a right angle.

210. In an acute triangle $\triangle ABC$, the tangents to its circumcircle at A and C intersect at D, the tangents to its circumcircle at C and B and intersect at E. AC and BD meet at R while AE and BC meet at P. Let Q and S be the mid-points of AP and BR respectively. Prove that $\angle ABQ = \angle BAS$.

211. Two circles Γ_1 and Γ_2 meet at P, Q. Their common external tangent (closer to Q) touches Γ_1 and Γ_2 at A, B. Line PQ cuts AB at R and the perpendicular to PQ through Q cuts AB at C. CP cuts Γ_1 again at D and the parallel to AD through B cuts CP at E. Show that $RE \perp CD$.

212. Let $ABCD$ be a convex quadrilateral such that the angle bisectors of $\angle DAB$ and $\angle ADC$ intersect at E on BC. Let F be on AD such that $\angle FED = 90^\circ - \angle DAE$. If $\angle FBE = \angle FDE$, prove that

$$EB^2 + EF \cdot ED = EB(EF + ED)$$

213. Let ABC be a triangle. Let P be a point inside such that $\angle BPC = 180^\circ - \angle ABC$ and $\frac{CP}{PT} = \frac{CB}{PA}$. Prove that $\angle APB = \angle CPB$.

20
214. Let $ABCD$ be a cyclic quadrilateral, and let r_{XYZ} denote the inradius of $\triangle XYZ$. Prove that

$$r_{ABC} + r_{CDA} = r_{BCD} + r_{DAB}$$

215. $\triangle ABC$ is right-angled at A. H is the projection of A onto BC and I_1, I_2 are the incenters of $\triangle AHB$ and $\triangle AHC$. Circumcircles of $\triangle ABC$ and $\triangle AI_1I_2$ intersect at A, P. Show that AP, BC, I_1I_2 concur.

216. An ant is crawling on the inside of a cube with side length 6. What is the shortest distance it has to travel to get from one corner to the opposite corner?

217. If I_a is the excenter opposite to side A and O is the circumcenter of $\triangle ABC$. Then prove that:

$$(OI_a)^2 = R^2 + 2Rr_a$$

218. The two circles below have equal radii of 4 units each and the distance between their centers is 6 units. Find the area of the region formed by common points.

219. Triangle ABC and its mirror reflection $A'B'C'$ are arbitrarily placed on a plane. Prove that the midpoints of the segments AA', BB' and CC' lie on the same straight line.

220. The convex hexagon $ABCDEF$ is such that

$$\angle BCA = \angle DEC = \angle FAE = \angle AFB = \angle CBD = \angle EDF$$

Prove that $AB = CD = EF$.

221. Let ABC be a triangle such that $BC = \sqrt{2}AC$. Let the line perpendicular to AB passing through C intersect the perpendicular bisector of BC at D. Prove that $DA \perp AC$.

222. Three circles with centres A, B, C touch each other mutually, say at points X, Y, Z. Tangents drawn at these points are concurrent (no need to prove that) at point P such that $PX = 4$. Find the ratio of the product of radii to the sum of radii.

223. Hexagon $ABCDEF$ is inscribed in a circle of radius R centered at O; let $AB = CD = EF = R$. Prove that the intersection points, other than O, of the pairs of circles circumscribed about $\triangle BOC$, $\triangle DOE$ and $\triangle FOA$ are the vertices of an equilateral triangle with side R.

224. Triangle ABC has circumcenter O and orthocenter H. Points E and F are chosen on the sides AC and AB such that $AE = AO$ and $AF = AH$. Prove that $EF = OA$.
225. Let AD, BE, CF be the altitudes of triangle ABC. Show that the triangle whose vertices are the orthocenters of triangles AEF, BDF, CDE is congruent to triangle DEF.

226. Suppose ℓ_1 and ℓ_2 are parallel lines and that the circle Γ touches both ℓ_1 and ℓ_2, the circle Γ_1 touches ℓ_1 and Γ externally in A and B, respectively. Circle Γ_2 touches ℓ_2 in C, Γ externally in D and Γ_1 externally at E. Prove that AD and BC intersect in the circumcenter of triangle BDE.

227. $\triangle ABC$ is scalene and M is the midpoint of BC. Circle ω with diameter AM cuts AC, AB at D, E. Tangents to ω at D, E meet at T. Prove that $TB = TC$.

228. Point P lies inside triangle ABC and $\angle ABP = \angle ACP$. On straight lines AB and AC, points C_1 and B_1 are taken so that $BC_1 : CB_1 = CP : BP$. Prove that one of the diagonals of the parallelogram whose two sides lie on lines BP and CP and two other sides (or their extensions) pass through B_1 and C_1 is parallel to BC.

229. Let ABC be a right angled triangle at A. D is a point on CB. Let M be the midpoint of AD. CM intersects the perpendicular bisector of AB at E. Prove that $BE \parallel DA$.

230. Prove that the pedal triangle of the Nine-point centre of a triangle with angles 75°, 75°, 30° has to be equilateral.

231. $\triangle ABC$ is right-angled at A. D and E are the feet of the A-altitude and A-angle bisector. I_1, I_2 are the incenters of $\triangle ADB$ and $\triangle ADC$. Inner angle bisector of $\angle DAE$ cuts BC and I_1I_2 at K, P. Prove that $PK : PA = \sqrt{2} - 1$.

232. In acute triangle ABC, there exists points D and E on sides AC, AB respectively satisfying $\angle ADE = \angle ABC$. Let the angle bisector of $\angle A$ hit BC at K. P and L are projections of K and A to DE, respectively, and Q is the midpoint of AL. If the incenter of $\triangle ABC$ lies on the circumcircle of $\triangle ADE$, prove that P, Q, and the incenter of $\triangle ADE$ are collinear.

233. Let (O) be the circumcircle ABC. D, E lies on (BC). (U) touches to AD, BD at M and intouches (O). (V) touches to AE, BE at N and intouches (O). d touches external to (U) and (V). P lie on d and d touches to the circumcircle of BPC. A circle touches to d at P and BC at H. Prove PH is the bisector of \overline{MPN}. (BC) be circle with diameter BC.

234. In triangle ABC, the median through vertex I is m_i, and the height through vertex I is h_{ii}, for $I \in A, B, C$. Prove that if

\[
\left(\frac{h_a^2}{h_b h_c} \right)^{m_a} \left(\frac{h_b^2}{h_c h_a} \right)^{m_b} \left(\frac{h_c^2}{h_a h_b} \right)^{m_c} = 1
\]

then ABC is equilateral.
235. Let D and E are points on sides AB and AC of a $\triangle ABC$ such that $DE \parallel BC$, and P is a point in the interior of $\triangle ADE$, PB and PC meet DE at F and G respectively. Let O and O' be the circumcenters of $\triangle PDG$ and $\triangle PFE$ respectively. Prove that $AP \perp OO'$.

236. Let $ABCD$ be a parallelogram. If $E \in AB$ and $F \in CD$, and provided that $AF \cap DE = X$, $BF \cap CE = Y$, $XY \cap AD = L$, $XY \cap BC = M$; show that $AL = CM$.

237. In a triangle ABC, P is a point such that $\angle PBA = \angle PCA$. Let B', C' be the feet of perpendiculars from P onto AB and AC. If M is the midpoint of BC, the prove that M lies on the perpendicular bisector of $B'C'$.

238. The lines joining the three vertices of triangle ABC to a point in its plane cut the sides opposite vertices A, B, C in the points K, L, M respectively. A line through M parallel to KL cuts BC at V and AK at W. Prove that $VM = MW$.

239. Let $ABCD$ be a parallelogram. Let $M \in AB$, $N \in BC$ and denote by P, Q, R the midpoints of DM, MN, ND, respectively. Show that the lines AP, BQ, CR are concurrent.

240. Let (O_1), (O_2) touch the circle (O) internally at M, N. The internal common tangent of (O_1) and (O_2) cut (O) at E, F, R, S. The external common tangent of (O_1), (O_2) cut (O) at A, B. Prove that $AB \parallel EF$ or $AB \parallel SR$.

241. Let H be the orthocenter of the triangle ABC. For a point L, denote the points M, N, P are chosen on BC, CA, AB, respectively, such that HM, HN, HP are perpendicular to AL, BL, CL, respectively. Prove that M, N, P are collinear and HL is perpendicular to MP.

242. The bisector of each angle of a triangle intersects the opposite side at a point equidistant from the midpoints of the other two sides of the triangle. Find all such triangles.

243. $ABCD$ trapezoid’s bases are AB, CD with $CD = 2 \cdot AB$. There are P, Q points on AD, BC sides and $\frac{DP}{PA} = 2$, $\frac{BQ}{QC} = 3 : 4$. Find ratio of $ABQP$, $CDPQ$ quadrilaterals areas.

244. In convex quadrilateral $ABCD$ we found two points K and L, lying on segments AB and BC, respectively, such that $\angle ADK = \angle CDL$. Segments AL and CK intersects in P. Prove, that $\angle ADP = \angle BDC$.

245. Let $ABCD$ be a parallelogram and P is a point inside such that $\angle PAB = \angle PCB$. Prove that $\angle PBC = \angle PDC$.

24
246. Consider a triangle ABC and let M be the midpoint of the side BC. Suppose $\angle MAC = \angle ABC$ and $\angle BAM = 105^\circ$. Find the measure of $\angle ABC$.

247. Let AA_1, BB_1, CC_1 be the altitudes of acute angled triangle ABC; O_A, O_B, O_B are the incenters of triangles AB_1C_1, BC_1A_1, CA_1B_1, respectively; T_A, T_B, T_C are the points of tangent of incircle of triangle ABC with sides BC, CA, AB respectively. Prove, that all sides of hexagon $T_AO_CT_BO_AT_CO_B$ are equal.

248. Let ABC be a triangle and P is a point inside. Let AP intersect BC at D. The line through D parallel to BP intersects the circumcircle of $\triangle ADB$ at E. The line through D parallel to CP intersects the circumcircle of $\triangle ADB$ at F. Let X be a point on DE and Y is a point on DF such that $\angle DCX = \angle BPD$ and $\angle DBY = \angle CPD$. Prove that $XY \parallel EF$.

249. Prove that if N^*, O is the isogonal conjugate of the nine-point centre of $\triangle ABC$ and the circumcentre of $\triangle ABC$ respectively, then A, N^*, M are collinear, where M is the circumcentre of $\triangle BOC$.

250. So here’s easy one in using vectors. $ABCD$ is convex pentagon with S area. Let a, b, c, d, e are area of $\triangle ABC$, $\triangle BCD$, $\triangle CDE$, $\triangle DEA$, $\triangle EAB$. Prove that:

$$S^2 - S(a + b + c + d + e) + ab + bc + cd + de + ea = 0$$

251. ABC is a triangle with circumcentre O and orthocentre H. H_a, H_b, H_c are the foot of the altitudes from A, B, C respectively. A_1, A_2, A_3 are the circumcentres of the triangles BOC, COA, AOB respectively. Prove that H_aA_1, H_bA_2, H_cA_3 concur on the Euler’s line of triangle ABC.

252. The incircle (I) of a given scalene triangle ABC touches its sides BC, CA, AB at A_1, B_1, C_1, respectively. Denote ω_B, ω_C the incircles of quadrilaterals BA_1IC_1 and CA_1IB_1, respectively. Prove that the internal common tangent of ω_B and ω_C different from IA_1 passes through A.

253. Let ω_1, ω_2 be 2 circles externally tangent to a circle ω at A, B respectively. Prove that AB and the common external tangents of ω_1, ω_2 are concurrent.

254. Let AC and BD be two chords of a circle ω that intersect at P. A smaller circle ω_1 is tangent to ω at T and AP and DP at E, F respectively. (Note that the circle ω_1 will lie on the same side of A, D with respect to P.) Prove that TE bisects ABC of ω, and if I is the incentre of ACD, show that $F = \omega_1 \cap EI \implies DF$ is tangent to ω_1.

255. Assume that the point H is the orthocenter of the given triangle ABC and P is an arbitrary point on the circumcircle of ABC. E is a point on AC such that $BE \perp AC$. Let us construct to parallelograms $PAQB$ and $PARC$. Assume that AQ and HR intersect at point X. Prove that $EX \parallel AP$.

24
256. Let AD, BE be the altitudes of triangle ABC and let H be the orthocenter. The bisector of the angle DHC meets the bisector of the angle B at S and meet AB, BC at P, Q, respectively. And the bisector of the angle B meets the line MH at R, where M is the midpoint of AC. Show that $RPBQ$ is cyclic.

257. Prove that the Simson lines of diametrically opposite points on circumcircle of triangle ABC intersect at nine point circle of the triangle.

258. In an equilateral triangle ABC. Prove that lines through A that trisect outward semicircle on BC as diameter trisect BC as well.

259. Prove that the feet of the four perpendiculars dropped from a vertex of a triangle upon the four bisectors of the two other angles (two internal and two external angle bisectors) are collinear.

260. Let ABC be a triangle. Let the angle bisector of $\angle A, \angle B$ intersect BC, AC at D, E respectively. Let J be the incenter of $\triangle ACD$. Suppose that $EJDB$ is cyclic. Prove that $\angle CAB$ is equal to either $\angle CBA$ or $2\angle ACB$.

25
Solutions
